Automatische Data Warehouse Generierung wird immer mehr zum Trend. Die offensichtlichen Vorteile sind u.a. schnellere Lieferzeiten, geringere Kosten für die Entwicklung und zukünftige Flexibilität. Für viele Unternehmen ist es nicht mehr akzeptabel,  mehrere Monate oder sogar Jahre auf die Vollendung eines Business Intelligence – Projekts zu warten. Inzwischen gibt es einige Data Warehouse Automatisierungstools auf dem Markt. Diese sind meistens mit Lizenzkosten verbunden, bieten dabei aber nicht den gleichen Funktionsumfang. Ich habe mir einige Tools angeschaut und deren Möglichkeiten verglichen. Folgende Fragestellungen haben sich dabei als Vergleichskriterien herauskristallisiert.

Was wird automatisiert?

Wenn man ein Automatisierungstool im Unternehmen einführt, wünscht man sich eine Minimierung des manuellen Aufwandes. Kosten für Consultingleistung sollen signifikant sinken und Ergebnisse viel schneller und sicherer erreicht werden. Aber was sind die Tools tatsächlich imstande zu liefern? Wird das Datenmodell automatisch generiert? Wie sieht es mit der technischen Dokumentation aus? Welche Tools braucht man zusätzlich?

Wieviel muss man noch manuell machen?

Automatisierung ist nicht gleich Automatisierung. Einige Tools liefern fertige Templates bzw. integrierte Generierungsmöglichkeiten mit. Bei anderen sind nur rein technische Schritte automatisiert, die Modellierung dazwischen muss immer noch manuell erfolgen. Wieviel Personal wird dann immer noch benötigt?

Welche Architekturen werden unterstützt?

Dritte Normalform? Star Schema? Data Vault? Welche Architektur ist die richtige für mein Data Warehouse? Werden sich die Anforderungen zukünftig ändern oder erweitern? Nicht alle Tools liefern die Flexibilität alle genannten Architekturen, evtl. auch gleichzeitig, zu verwenden.

Welche DB Plattformen werden unterstützt?

Viele Data Warehouse Automatisierungswerkzeuge beschränken sich auf nur eine Zieldatenbankplattform, während andere unterschiedliche Datenbanksysteme unterstützen. Möchte man in der Zukunft das Data Warehouse auf eine andere Datenbankplattform migrieren, sollte das Tool diese Option unterstützen.

Unten habe ich die angebotenen Funktionalitäten von vier gängigen Tools zusammengefasst:

 Quipu
(*zahlungspflichtig)
WhereScapeAnalytiX DSAttunityCompose
(BIReady)
GenerierungDB Modell
ETL Code
Dokumentation*
Modellversionierung*
DB Modell
Indizes
ETL Code
Dokumentation
Scheduling
Versionierung
ETL Jobs
Dokumentation
DB Modell
ETL Code
Manueller AufwandViele Optionen nur in zahlungspflichtiger Version erhältlichDatenbankmodell muss erstellt werdenUnterstützt CDC-Anbindung
ArchitekturenData Vault
Templates*
Data Vault
3NF
Dimensional
Gemischt
TemplatesData Vault
3NF
Dimensional
Datenbanken/
ETL Tools
ANSI SQL
XML
SQL Server
Teradata
Oracle
IBM DB2
Netezza
Datastage
Informatica
SSIS
Talend
ODI
BODS
(SQL Server
Oracle)
SQL Server
Oracle
DB2
Teradata
Netezza

Die abgebildete Tabelle zeigt, wie unterschiedlich die Antworten ausfallen können. Jedes Tool hat seine Stärken, welches aber das richtige ist hängt immer von den jeweiligen Anforderungen ab. Viele ETL Werkzeuge liefern aber auch eingebaute Generierungssprachen mit, wie Groovy bei ODI oder PowerCenter Script bei Informatica. Ich kann mir durchaus Projektsituationen vorstellen, bei denen eine (teilweise) Data Warehouse Automatisierung ohne ein zusätzliches Automatisierungstool sinnvoll möglich ist. Wie immer gibt es viele Wege, die zum Ziel führen. Den richtigen für den jeweiligen Kunden zu finden bleibt trotz Automatisierung eine spanende manuelle Aufgabe.

Tags:

Keine Kommentare vorhanden.

    Schreibe einen Kommentar

    Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert.